skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "van Kan, Adrian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract On–off intermittency occurs in nonequilibrium physical systems close to bifurcation points, and is characterised by an aperiodic switching between a large-amplitude ‘on’ state and a small-amplitude ‘off’ state. Lévy on–off intermittency is a recently introduced generalisation of on–off intermittency to multiplicative Lévy noise, which depends on a stability parameter α and a skewness parameter β . Here, we derive two novel results on Lévy on–off intermittency by leveraging known exact results on the first-passage time statistics of Lévy flights. First, we compute anomalous critical exponents explicitly as a function of arbitrary Lévy noise parameters ( α , β ) for the first time, by a heuristic method, extending previous results. The predictions are verified using numerical solutions of the fractional Fokker–Planck equation. Second, we derive the power spectrum S ( f ) of Lévy on–off intermittency, and show that it displays a power law S ( f ) ∝ f κ at low frequencies f , where κ ∈ ( − 1 , 0 ) depends on the noise parameters α , β . An explicit expression for κ is obtained in terms of ( α , β ) . The predictions are verified using long time series realisations of Lévy on–off intermittency. Our findings help shed light on instabilities subject to non-equilibrium, power-law-distributed fluctuations, emphasizing that their properties can differ starkly from the case of Gaussian fluctuations. 
    more » « less
  2. Instabilities of fluid flows often generate turbulence. Using extensive direct numerical simulations, we study two-dimensional turbulence driven by a wavenumber-localised instability superposed on stochastic forcing, in contrast to previous studies of state-independent forcing. As the contribution of the instability forcing, measured by a parameter $$\gamma$$ , increases, the system undergoes two transitions. For $$\gamma$$ below a first threshold, a regular large-scale vortex condensate forms. Above this threshold, shielded vortices (SVs) emerge within the condensate. At a second, larger value of $$\gamma$$ , the condensate breaks down, and a gas of weakly interacting vortices with broken symmetry spontaneously emerges, characterised by preponderance of vortices of one sign only and suppressed inverse energy cascade. The latter transition is shown to depend on the damping mechanism. The number density of SVs in the broken symmetry state slowly increases via a random nucleation process. Bistability is observed between the condensate and mixed SV-condensate states. Our findings provide new evidence for a strong dependence of two-dimensional turbulence phenomenology on the forcing. 
    more » « less
  3. In many geophysical and astrophysical flows, suppression of fluctuations along one direction of the flow drives a quasi-two-dimensional upscale flux of kinetic energy, leading to the formation of strong vortex condensates at the largest scales. Recent studies have shown that the transition towards this condensate state is hysteretic, giving rise to a limited bistable range in which both the condensate state as well as the regular three-dimensional state can exist at the same parameter values. In this work, we use direct numerical simulations of thin-layer flow to investigate whether this bistable range survives as the domain size and turbulence intensity are increased. By studying the time scales at which rare transitions occur from one state into the other, we find that the bistable range grows as the box size and/or Reynolds number $Re$ are increased, showing that the bistability is neither a finite-size nor a finite- $Re$ effect. We furthermore predict a cross-over from a bimodal regime at low box size, low $Re$ to a regime of pure hysteresis at high box size, high $Re$ , in which any transition from one state to the other is prohibited at any finite time scale. 
    more » « less